US009311139B1

a2 United States Patent 10) Patent No.: US 9,311,139 B1
Lowery (45) Date of Patent: Apr. 12,2016
(54) BATCH PROCESSING OF OVERSUBSCRIBED OTHER PUBLICATIONS

SYSTEM BASED ON SUBSCRIBER USAGE
PATTERNS

(71) Applicant: Flexera Software LLC, Itasca, IL. (US)
(72) Inventor: Robert Lowery, Melbourne (AU)
(73) Assignee: Flexera Software LL.C, Itasca, IL. (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/726,269

(22) Filed: May 29, 2015
(51) Imt.ClL
GOG6F 9/46 (2006.01)
GO6F 9/48 (2006.01)
GO6F 17/30 (2006.01)
(52) US.CL
CPC GO6F 9/4843 (2013.01); GOGF 9/4881

(2013.01); GOGF 17/30563 (2013.01)
(58) Field of Classification Search
CPC GOGF 9/4843; GOGF 9/4881; GO6F 17/30563
USPC ittt 718/101
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,844,980 A * 12/1998 Pateletal. 379/88.22
6,662,203 B1* 12/2003 Klingetal. ... 718/103
6,996,821 B1* 2/2006 Butterworth .. 718/100
8,924,981 Bl1* 12/2014 Brownetal. ... 718/103

Execution prioritization example

Nx SUMDB} 351

Chun et al., “User-centric Performance Analysis of Market-based
Cluster Batch Schedulers,” IEEE, 2002, 9pg.*

Etison et al., “A Short Survey of Commercial Cluster Batch Schedul-
ers,” The Hebrew University, 2005, 4pg.*

“N1 Grid Engine 6 Administration Guide,” published in May 2005 by
Sun Microsystems, Inc., 220pg.*

Zaharia et al., “Job Scheduling for Multi-User MapReduce Clusters,”
University of California, Berkeley, Apr. 2009, 18pg.*

* cited by examiner

Primary Examiner — Ryan Coyer
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

Some embodiments include a method of scheduling batch
processing of a batch processing system based on subscriber
usage patterns. The method includes steps of recording a last
job commencement event for a subscriber when the batch
processing system starts processing a batch process for the
subscriber; recording a last usage event for the subscriber
when the subscriber uses the batch processing system; in an
event that a time period elapsed since the last usage event for
the subscriber is less than a time period elapsed since the last
job commencement event for the subscriber, placing a next
batch process of the subscriber into a recently used queue;
identifying the next batch process of the subscriber as the
oldest batch process from the recently used queue; and start
processing the identified batch process for the subscriber.

22 Claims, 5 Drawing Sheets

L o T —— ———,
sUM(DB) > DT 353
— T — ™~ 306A _ 307A 308A 309A 310a Unprioritized
301 302 303 304 305 ¥ omisy Jomis2)]] DB(s3) JoBlsd)) DB {s5)]
joBsn UoBa2;) DB(s3) [OB(s4) DB (55)
Batch processing DB (s4) § OB (s2) | DB(s3) DB (s} DB (s2)§f DB (s5) i
321 322 323 324 325 ?1 306Bwz 3 #4 309B 310B 311B Prioritized
(88 Ot Os3 Oed (D82 H é%gz 3(%:_3}’1
Subscriber usage 341 .
Hud axpaditedz B >DT goes
B S TU(s2; 363 unnoticed for
o1 361 subscribers s1 and s5
T T LT T T N 0 S B

TB{s2) > DT - unprioritizes 365

T8 {s2) « DT - prioritized 367

371

sessnsvarconsfhonferddinncuns

P time

1- 54 (expedite)
372 2 - 52 {recently used)

373 %3 - 23 irecently used)
374 4 - 5t foverdus)
375#5 - 52 (recently used}
376 @5 - 55 (low pricrity}

U.S. Patent Apr. 12,2016 Sheet 1 of 5 US 9,311,139 B1

Client Client
104A 104N

Network
106

Task processing
system

Client

100 interface —
— module 108

. \
Task schedulingl 110
and processing
module

U.S. Patent Apr. 12,2016 Sheet 2 of 5 US 9,311,139 B1

Extract, Transform, Load (ETL)

Sources 202 Targets 210
212
APP 1 ; ;
Dt Werehiouse
ARz B 214
: Diataman
APES
F‘%z‘m " FlatFiles
! ! X
- Unstructured "

FIG. 2

US 9,311,139 B1

Sheet 3 of 5

Apr. 12,2016

U.S. Patent

*
(Ayoisd moi) G5 - 0@ Q¢ .
(pasn Aguesas) 28 - G #G /S m
(enpieac) is - y @y /¢ s
{peen Auasel) (8 -0 @G 0 :
(pesn Apusces) 23 - 2 @70
(aupedxe) s - L 8| /€
sun o -
Jo¢ peznuoud - 1a > {Z8) gl . goe Peznuocudun - g < (28} €L
i"."‘.""‘..’,.Q..?*“"‘W”Q".Q"Q‘.“Q“.*".’."'C“'.‘.Q‘GQ""V
GS pue | 'S siaquosqns : Log La
-—O* U@O_H.OCCD mwm mw@w«wwb " ‘i’.’*.’"".""”’.‘..”“l.‘i—"".v
906 | < gl L RLEEITIEE o * popadxes 85
178 0z H Lve abesn Jequosqns
Lo 2e0 : 30 930 €50 180 $50
PoZHUOLd gLLe g0Le E60S v® ggoc £e9/0¢ 2eg90g L sce vee gee cee lee
e Jgvke S , Buissaooid yojeg
| (s¢) 80 Neea]l 6orea | cea Jze)aa]{rs)aa
(s¢) 80 Lo a0 Jz=aa] vs18a |
* {58} 80 m {y9) &Qﬂ {gs) g0 _ {29} &Qﬁ {8} ag 50¢ 0 €0¢ 20¢ L0E
€GE 10 < (8akins
— —

LGE (BOMNS X N

a|dwexa uoneziiioud uonnoaxs

U.S. Patent Apr. 12,2016 Sheet 4 of 5 US 9,311,139 B1

Boteh scheduler 410
Expedite queue 401] v Bateh processor 420
Ary expedite e
batch processes _"
412
422
Record TS
Querdue queve 402 Y
Any overdus e
batch provesses ,
414 k4
424
Process batch
Fecently used queue 403 v
ny recently used b
bateh processes """""""'""""
426
Record DB
Low priority queue 404
Aryy low priority Yes)

FIG. 4

U.S. Patent Apr. 12,2016 Sheet 5 of 5 US 9,311,139 B1

500

PROCESSOR MEMORY
INSTRUCTIONS
INSTRUCTIONS
NON-VOLATILE MEMORY
506
NETWORK INTERFACE 508 BUS
510
DRIVE UNIT 512
MACHINE-READABLE
(STORAGE) MEDIUM
INSTRUCTIONS

FIG. 5

US 9,311,139 Bl

1
BATCH PROCESSING OF OVERSUBSCRIBED
SYSTEM BASED ON SUBSCRIBER USAGE
PATTERNS

RELATED FIELD

At least one embodiment of this disclosure relates gener-
ally to batch processing scheduling, and in particular, meth-
ods and systems to schedule batch processing of oversub-
scribed systems based on subscriber usage patterns.

BACKGROUND

There is an increasing demand for automatic scheduling of
batch processing tasks. In particular, users of online services
(e.g., cloud-based services or applications) can submit large
amounts of requests every day to the servers of the online
services. The online services generally offer levels of service
including soft or hard guarantees on when to finish the users’
tasks and to provide results to the users. However, with an
increasing number of subscribers signing up for an online
service, the current computational capacity of the online ser-
vice may not be able to handle the submitted tasks within a
planned time frame. In other words, due to the cost control or
system scalability limits, the demands of the batch processing
tasks exceed the available capacity of the service.

SUMMARY

To alleviate the discrepancy between the capacity limita-
tion of batch processing system and the increasing demand of
batch processing tasks, the disclosure provides a batch sched-
uling method to prioritize batch processing based on sub-
scriber usage patterns. The goal of the scheduling method is to
achieve soft guarantees for returning the processed results, at
least for some subscribers, where hard guarantees of finishing
the batch processing are not mandated.

Subscribers of the batch processing system (also referred
to as “users”) can have various usage patterns. One subscriber
may use the batch processing system on an hourly or daily
basis; while another subscriber may use the batch processing
system once in a week or even a month. Active subscribers
with frequent usage patterns are more likely to be negatively
affected by delayed batch processing. On the other hand, the
inactive subscribers with infrequent usage patterns likely do
not notice the delays. Therefore, the batch processing system
can prioritize the batch processing for the active subscribers
without actual negative consequence to the inactive subscrib-
ers.

The batch processing system can implement multiple pri-
ority queues, such as an overdue queue, a recently used queue,
and alow priority queue. The overdue queue includes overdue
batch processes that need immediate attention from the batch
processing system. A batch process for a subscriber is deter-
mined to be overdue when the time elapsed since the last
batch process commencement for the subscriber is more than
an adjusted overdue threshold. The adjusted overdue thresh-
old depends on a total time taken by the batch processing
system to complete all batch processes of the last cycle, and a
limit factor determining how far batch processes in the over-
due queue are allowed to lapse before being processed.

It the overdue queue is empty, the batch processing system
starts processing the batch processes in the recently used
queue. The recently used queue includes batch processes for
subscribers who have recently used the batch processing sys-
tem. The usage event is recorded when the subscriber inter-
acts with the batch processing system via a user interface

10

20

25

35

40

45

55

2

provided by the batch processing system, or when a back-
ground usage for the subscriber happens, e.g., generating
report on the background or making application program-
ming interface (API) calls provided by the batch processing
system. A batch process for a subscriber is moved into the
recently used queue when the time period elapsed since the
last usage by the subscriber is less than the time period
elapsed since the last batch process commencement for the
subscriber. In other words, a batch process is determined to be
in the recently used queue if the subscriber of the batch
process has recently used the batch processing system after
the system started processing the last batch process for the
subscriber.

Ifthe overdue queue and the recently used queue are empty,
the batch processing system starts processing batch processes
from a low priority queue. The low priority queue includes
batch processes that are not given priority for processing. In
some embodiments, the subscribers can also request the batch
processing system to expedite their batch processes. In
response to the requests, the batch processing system moves
the requested batch processes into an expedite queue. The
batch processing system may first execute the batch processes
in the expedite queue before handling other batch processes
from the overdue queue, the recently used queue and the low
priority queue.

Such a scheduling method is particular useful for an over-
subscribed system. Since many subscribers are inactive users
who do not need to access the processed result frequently,
prioritizing the order in which batch processes are performed
based on user usage allows the batch processing system to
meet the desired result-update frequency for the active sub-
scribers that have been frequently using the batch processing
system.

Some embodiments of this disclosure have other aspects,
elements, features, and steps in addition to or in place of what
is described above. These potential additions and replace-
ments are described throughout the rest of the specification

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11s a block diagram of a system architecture of a task
processing system 100, in accordance with various embodi-
ments.

FIG. 2 is a block diagram illustrating an example extract,
transform and load (ETL) process, in accordance with various
embodiments.

FIG. 3 is a block diagram of an example of a batch execu-
tion prioritization process, in accordance with various
embodiments.

FIG. 4 is a block diagram of four priority queues for sched-
uling batch processes, in accordance with various embodi-
ments.

FIG. 5 is a diagrammatic representation of a machine in the
example form of a computer system within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies or modules discussed herein, may
be executed.

The figures depict various embodiments of this disclosure
for purposes of illustration only. One skilled in the art will
readily recognize from the following discussion that alterna-
tive embodiments of the structures and methods illustrated
herein may be employed without departing from the prin-
ciples of the invention described herein.

DETAILED DESCRIPTION

FIG. 11s a block diagram of a system architecture of a task
processing system 100, in accordance with various embodi-

US 9,311,139 Bl

3

ments. The task processing system 100 (also referred to sim-
ply “system”) interacts with multiple client computing
devices or systems 104A-104N via a network 106. As illus-
trated in FIG. 1, the task processing system 100 includes at
least one client interface module 108, a task scheduling and
processing module 110, and one or more mass storage
devices 112A-112M, e.g., conventional magnetic disks, opti-
cal disks (e.g. CD-ROM or DVD based storage), magneto-
optical (MO) storage, flash memory storage device or any
other type of non-volatile storage devices suitable for storing
structured or unstructured data. The mass storage devices
112A-112M may be associated with a mass storage sub-
system 114.

The client systems 104A-104N may access the client inter-
face module 108 via network 106, which can be a packet-
switched network, for example, a local area network (LAN),
a wide area network (WAN), the Internet, or any other type of
network.

The client interface module 108 can make some or all of
computational capacity of the task scheduling and processing
module 110 available to the client systems 104 A-104N. Simi-
larly, the client interface module 108 can make some or all of
the storage space on the mass storage devices 112A-112M
available to the client systems 104A-104N. The client inter-
face module 108 can communicate with the client systems
104A-104N according to well-known protocols, e.g., the
Hypertext Transfer Protocol (HTTP).

The client interface module 108 can present or export task
results to the client systems 104A-104N through the NetApp
106 in various ways. For example, the client interface module
108 can host a HTTP (Hypertext Transfer Protocol) web
server. The client systems 104A-104N can use web browser
applications to review or retrieve task results by accessing
web pages hosted on the HT'TP web server.

In various embodiments, the task processing system 100
can be a batch processing system that regularly performs
extract, transform and load (ETL) batch processing. The ETL
batch processing task can take a significant amount of time
and resources to complete. One example of such ETL batch
processing system is a server or cloud-based service that
running FlexNet Manager Suite. (FlexNet Manager is a trade-
mark of Flexera Software LL.C.) The FlexNet Manager Suite
is a solution for hardware and software assets management as
well as software license compliance and optimization. Enter-
prise customers use the FlexNet Manager Suite to track the
software and hardware assets within customers’ organiza-
tions, and monitor their license consumption. The FlexNet
Manager Suite can provide information regarding what
license rights a customer is entitled to and what license rights
the customer is actually using to support the client’s organi-
zation.

In order to collect and analyze the information about the
assets and licenses, the FlexNet Manager Suite collects infor-
mation about each device that is in a customer’s organization,
data that relate to the hardware of the device, data that relate
to the software running on top of the device hardware. Such
an ETL processing task involves extracting the information
from different sources, transforming the extracted informa-
tion (e.g., normalizing the information into a common for-
mat), and then loading the transformed information into the
system.

FIG. 2 is a block diagram illustrating an example extract,
transform and load (ETL) process, in accordance with various
embodiments. In FIG. 2, the ETL process 200 loads data from
source systems 202 into targets 210 such as data warehouses

20

40

45

4

(DWH) 212 or data marts (DM) 214. Such a ETL process can
also be used in data integration, data migration and master
data management situations.

In order to facilitate the data movement and transforma-
tion, the ETL process 200 in FIG. 2 first extracts data from one
or more sources 202 as illustrated in FIG. 2. Then the ETL
process transforms the data by, e.g., cleansing, reformatting,
standardization, aggregation, or applying business rules. The
ETL process loads the resulting data set into specific target
systems. The ETL process may support massive parallel pro-
cessing for large data volumes and is a reusable component
that can be scheduled to perform data movement and process-
ing jobs on a regular basis. Typically the ETL process is used
for data movement across or within systems involving high
data volumes and complex business rules, such as bulk data
integration, flat-file based and hierarchical transformations or
high scale, batch-oriented data delivery. Multiple ETL pro-
cesses can be grouped and executed together.

For example, the FlexNet Manager Suite performs the ETL
processes on a daily basis as batch processes. The users of the
FlexNet Manager Suite interact with result data by using a
web browser to access a web server interface of the FlexNet
Manager Suite. With an increasing number of service sub-
scribers (e.g., tenants), especially when the system is imple-
mented as a cloud-based service, the system may have prob-
lems to handle all of the batch processing that ideally should
be finished within a desired time frame. For example, a cloud-
based FlexNet Manager Suite may desire to complete all
batch processes every 24 hours for all subscribers. However,
due to the current task load and computational capacity limits,
the batch processes to extract, transform and load for all
subscribers may take more than 40 hours to finish.

To handle the discrepancy between the capacity limitation
and the need of batch processing, the system uses a schedul-
ing method to prioritize batch processing based on subscriber
usage patterns to achieve a soft guarantee where hard guar-
antees are not mandated.

Subscribers of a system may have different usage patterns
across the full spectrum of hourly, daily, weekly, or monthly
time frames. Subscribers with frequent usage are more likely
to be negatively affected by delayed batch processing;
whereas for infrequent users, delays are likely to be unnoticed
without actual negative consequence. For example, some
subscribers of FlexNet Manger may not use the system every
single day. So prioritizing the order in which batch processes
are performed based on usage will allow the system to meet
the desired 24 hour update for the subscribers that have been
actively using FlexNet Manager Suite.

Usage of the system includes, e.g., interactive use of the
service via a web browser user interface (UI). However, the
usage may also include scheduled background tasks, such as
generating report at the background or making application
programming interface (API) calls that are provided by the
service.

FIG. 3 is a block diagram of an example of batch execution
prioritization, in accordance with various embodiments. To
facilitate the prioritization of batch processing, the system
records various metrics for each subscriber. For example, the
system records a metric DB as a time duration of the last batch
processing for a subscriber. A metric TB is a time elapsed
since the last batch process commencement for a subscriber.
A metric TU is a time elapsed since the last usage by a
subscriber.

DT is a desired maximum time since the last batch process
commencement for a subscriber. In some embodiments, the
system specifies the metric DT for all subscribers. For
example, the FlexNet Manager Suite may specify the metric

US 9,311,139 Bl

5

DT forall subscribers as 24 hours. In other words, the FlexNet
Manager Suite specifies the desired maximum time for each
individual subscriber since the last batch process commence-
ment for that individual subscriber is 24 hours. DT is a goal
(also referred to as “soft target”) that the system prefers to
achieve for as many subscribers as possible. The prioritiza-
tion of batch processes ensures that most of the subscribers,
especially the active or frequent subscribers, can have their
batch processes finished within the time frame of DT.

In some embodiments, the metric DT remain as a constant.
In some other embodiments, the system or the subscribers can
change the value of DT during the scheduling.

By the definition of the metric TB, the goal that the system
tries to achieve is to keep the metric TB to be less than the time
DT. In other words, it is ideal for a subscriber if the time
elapsed since the last batch process commencement for the
subscriber is less than the desired maximum time since the
last batch process commencement for the subscriber. How-
ever, for an oversubscribed system with a large amount of
active subscribers, the total processing cycle time taken to
complete all pending batch processing in a time cycle is going
to be more than DT: SUM (DB)>DT. In some embodiments,
the total time in one time cycle is not a literal sum since batch
processing can occur in parallel based on server capability.

In some embodiments where the system can process mul-
tiple batch processes simultaneously (i.e., in parallel), the
metric SUM(DB) can have a slightly different meaning. In
those situations, the metric SUM(DB) may not be the literal
summation of all metrics DB of the batch processes from the
last cycle. The metric SUM(DB) can be the time from the
commencement of the first batch process of the last cycle, till
the end of the last batch process of the last cycle, regardless of
whether there are batch processes running in parallel. If the
system is able to get every batch processed done within the
desired time frame because the system’s server(s) have
enough parallel processing power, then the system may not
need the priority scheduling since there is no danger of over-
due. Therefore, it is enough to record the actual total time for
completing the batch processes of the last cycle as SUM(DB).

The metric N is a limit factor determining how far overdue
batch processes are allowed to go before being given priority
for processing. The metric N is used to ensure that the batch
processes are eventually performed even in the absence of
recent subscriber usage of the system. In some embodiments,
N is specified to be larger than 1.0 for the scheduling method
to be effective.

Larger values for the metric N will lead to improved
responsiveness for active subscribers, who recently have used
the system, at the expense of responsiveness for inactive
subscribes without recent usage. However, an N factor with a
too large value will lead to starvation, meaning the batch
processes will wait for a long time before they will be iden-
tified as being overdue. In that scenario, the system effec-
tively has no priority control over the batch processes. If the
N factor has a value that is too small, the system has not
opened up enough of a time window to be able to fit in enough
subscribers that have recently used the system.

In some embodiments, the N factor is a constant that the
system determines for all subscribers. In some other embodi-
ments, the subscribers can specify the N factor for each indi-
vidual subscriber. Alternatively, the N factor can be adjusted
as a way to adjust the levels of service for different subscrib-
ers.

In FIG. 3, the horizontal axis represents the time dimen-
sion. The rectangles 301-305, 306A-310A and 306B-311B
represent the batch processes and the horizontal lengths of the
rectangles 301-305, 306A-310A and 306B-311B represent

20

30

40

45

55

6

the time lengths used for the system to perform the corre-
sponding batch processes respectively. For example the first
rectangle 301 is a batch process request by subscriber s1; the
horizontal length of the rectangle 301 represents the value of
metric DB(s1).

The horizontal positions of the white dots 321-327 repre-
sent the time points when the subscribers use the system (by
interactive usage or background usage). For example, the
white dot 321 indicates that subscriber s5 uses the system at
the end of a time period when the system processes the batch
process 301. Similarly, the white dot 325 indicates that sub-
scriber s2 uses the system at the middle of a time period when
the system processes the batch process 305.

The horizontal position of the cross 341 presents the time
point when the subscriber s4 requests to expedite the batch
process of subscriber s4.

The dotted line 361 represents a time period of the desired
maximum time metric DT. The downward gull brace 353
represents a time period of a total processing cycle time
SUM(DB). For the scenario without parallel processing, as
illustrated in FIG. 3, SUM(DB)=DB(s1)+DB(s2)+DB(s3)+
DB(s4)+DB(s5). Since the system is oversubscribed, SUM
(DB)>DT. As shown in FIG. 3, the downward gull brace 353
representing SUM(DB) is longer in time dimension than the
dotted line 361 representing DT.

The downward gull brace 351 represents an adjusted over-
due threshold. The adjusted overdue threshold equals the total
processing cycle time SUM(DB) times the limit factor N:
NxSUM (DB). Since usually the value of N is larger than 1.0,
the downward gull brace 351 is longer than the downward
gull brace 363 in time dimension.

The horizontal positions of the black dots 371-376 repre-
sent each time point when the system triggers a batch sched-
uler to make a scheduling decision based on four priority
queues. The batch scheduler is illustrated in FIG. 4.

FIG. 4 is a block diagram of four priority queues for sched-
uling batch processes, in accordance with various embodi-
ments. In FIG. 4, the batch processes requested by subscribers
are kept in multiple priority queues. The system executes
lower priority queues only ifhigher priority queues are empty.
Within each queue, the system first executes the oldest batch
process left in that queue.

In the embodiment as illustrated in FIG. 4, the system
schedules the batch processing using four priority queues.
The first priority queue (i.e., the queue has the highest prior-
ity) is the expedite queue 401. A subscriber of the system can
specifically request, e.g. via a web browser user interface, a
particular batch process to be expedited. Accordingly, the
system places the requested batch process in the expedite
queue 401. The batch processes in the expedite queue will be
handled with top priority.

The queue having the second highest priority is the overdue
queue 402. The overdue queue includes overdue batch pro-
cesses. A batch process for a subscriber is overdue if the
metric TB for the subscriber is larger than the total processing
cycle time SUM (DB) times the limit factor N: TB>NxSUM
(DB). The NxSUM(DB) is an adjusted overdue threshold.
Once the threshold is passed, the batch process is highlighted
by being moved into the overdue queue 402. The tunable
factor N is to determine how far the system allows subscrib-
ers’ batch processes to wait beyond a desired timeframe
before the batch scheduler 410 prioritizes the batch processes
above average.

In some alternative embodiments, the batch scheduler 410
may treat the overdue queue 402 as the top priority queue and
the expedite queue 401 as having the second highest priority.
Especially in situation where there are lots of expedite

US 9,311,139 Bl

7

requests, the large amount of requests themselves can cause a
starvation. The system needs to make sure that the expedite
requests will not cause the majority of batch processes in the
overdue queue 402 lapse for a long time. Alternatively,
instead of swapping the priority order of the expedite queue
401 and the overdue queue 402, the batch scheduler 410 may
choose to run some batch processes from the overdue queue
402 even when there are batch processes left in the expedite
queue 401. For example, the batch scheduler 410 may choose
to run an overdue batch process ignoring the priority order, if
the overdue batch process has been overdue for a predeter-
mined threshold (e.g., a value even larger than the adjusted
overdue threshold NxSUM(DB)).

The queue having the third highest priority is the recently
used queue 403. The recently used queue includes batch
processes of subscribers who recently have used the system.
In other words, the recently used queue includes batch pro-
cesses of subscribers with TU<TB. The subscribers of batch
processes in the recently used queue 403 are subscribers who
are frequently using the system. The recently used queue 403
ensures a level of service for the frequent subscribers, by
prioritizing the batch processes of the frequent subscribers
ahead of the batch processes of the infrequent subscribers.
When there is no batch processes left in the expedite or
overdue queues, the batch scheduler 410 focuses on the
recently used queue 403.

The queue having the lowest priority is called low priority
queue 404 in FIG. 4. The low priority queue includes batch
processes of other subscribers that are not included in the
other three queues 401,402 and 403. The system only handles
batch processes in the low priority queue 404 when the other
three priority queues are empty. The subscribers of batch
processes in the low priority queue 404 do not use the system
regularly and likely do not notice whether the system delays
the batch processing. The low priority queue 404 ensures that
even if a subscriber has not logged into the system or used the
system recently, the batch process of that subscriber will
eventually run. In some embodiments, the low priority queue
404 has a cutoff period. Any batch process that has not been
performed for a time period longer than the cutoff period will
be moved into the expedite queue or overdue queue to have
more attention from the batch scheduler 410.

The batch scheduler 410 is triggered when each batch
process is finished. As shown in FIGS. 3 and 4. The black dots
371-376 in FIG. 3 represent the time points when the batch
scheduler 410 makes scheduling decisions. The batch sched-
uler 410 identifies the next batch process based on the sched-
uling decisions and instructs the batch scheduler 410 to per-
form the identified next batch process.

The batch scheduler 410 can proceed to a sleep mode when
the batch processor 420 is handling the batch processes. Once
the batch processor 420 finishes the steps as in blocks 422,
424 and 426, the batch processor 420 notifies the batch sched-
uler 420. The batch scheduler 410 wakes up from the sleep
mode to trigger another scheduling decision.

At decision block 412, the batch scheduler 410 of the
system first determines whether there are any expedite batch
processes in the expedite queue 401. If there is no expedite
batch processes in the expedite queue 401, the batch sched-
uler 410 moves to the next decision block 414. If there is one
or more expedite batch processes in the expedite queue 401,
the batch scheduler 410 identifies the oldest batch process left
in the expedite queue 401. Then the batch scheduler 410
instructs the batch processor 420 to handle the identified
batch process.

In response to the batch scheduler 410, the batch processor
420 at block 422 records the current metric TB for the sub-

10

15

20

25

30

35

40

45

50

55

60

65

8

scriber of the identified batch process, i.e., the time elapsed
since the last batch process commencement for the sub-
scriber. At block 424, the batch processor 420 processes the
identified batch process. After finishing the identified batch
process, at block 426, the batch processor 420 records the
current metric DB for the subscriber of the just finished batch
process, i.e., the time duration of processing the just finished
batch process. The metrics TB and DB for the subscriber are
recorded for determine the priority queue for the next batch
process requested by the subscriber. The metric DB is also
used to calculate SUM(DB) for the next cycle.

At decision block 414, the batch scheduler 410 determines
whether there are any overdue batch processes in the overdue
queue 402. If there is no overdue batch processes in the
overdue queue 402, the batch scheduler 410 moves to the next
decision block 416. If there is one or more overdue batch
processes in the overdue queue 402, the batch scheduler 410
identifies the oldest batch process left in the overdue queue
402. Then the batch scheduler 410 instructs the batch proces-
sor 420 to handle the identified batch process.

Similarly, at decision block 416, the batch scheduler 410
determines whether there are any batch processes of subscrib-
ers who recently have used the system in the recently used
queue 403. If there is no such batch processes in the recently
used queue 403, the batch scheduler 410 moves to the next
decision block 418. If there is one or more such batch pro-
cesses in the overdue queue 402, the batch scheduler 410
identifies the oldest batch process left in the recently used
queue 403. Then the batch scheduler 410 instructs the batch
processor 420 to handle the identified batch process.

At decision block 416, the batch scheduler 410 determines
whether there are any low priority batch processes in the low
priority queue 404. If there is no low priority batch processes
left in the low priority queue 403, the batch scheduler 410
proceeds to check if there is any newly submitted batch pro-
cess. I[fthere is one or more low priority batch processes in the
low priority queue 404, the batch scheduler 410 identifies the
oldest batch process left in the low priority queue 402. Then
the batch scheduler 410 instructs the batch processor 420 to
handle the identified batch process.

Turning back to FIG. 3 which illustrates an example pro-
cess using the four priority queues, there are five subscribers
in the example illustrated in FI1G. 3. However, there can be an
arbitrary number of subscribers in other various embodi-
ments. The white dots 321-327 represent the time points
when the subscribers use the system. Using the information of
the time points of white dots 321-327, the batch scheduler 410
can re-arrange batch processes in the four queues 401-404
and therefore readjusts the priority of the batch processes.

If there is no batch scheduler 410, the batch processes
would not be prioritized. In that situation, the system may
perform the batches processes based on the sequence of the
previous cycle, as shown by the rectangles 306A-309A.
Instead, with the help of the batch scheduler 410, the system
ensures that a more important or urgent batch process will be
handled in a prioritized manner.

For example, at the time point of black dot 371, the batch
scheduler 410 decides that the batch process 306B of s4
should be the next batch process to run, because the sub-
scriber s4 has requested to expedite the batch process at a
previous time point represented by cross 341. After the batch
processor 420 finishes the batch process 306B for the sub-
scriber s4, the batch scheduler 410 needs to determine the
next batch process to run.

Since there is no more batch process in the expedite queue
401, the batch scheduler 410 then looks into the overdue
queue 402. After determining at this time point 372 there is no

US 9,311,139 Bl

9

batch process in the overdue queue 402 whose TB>NxSUM
(DB), the batch scheduler 410 looks into the recently used
queue 403. At the time point 372, there are multiple batches
processes of subscribers who recently used the system. The
batch scheduler 410 determines the batch process 307B of
subscriber s2 is the oldest batch process in the recently used
queue 403 and decides to run the batch process 307B of
subscriber s2.

Atthe time point 373, again the expedite queue 401 and the
overdue queue 402 are empty. The next batch process in the
recently used queue 403 is the batch process 308B of sub-
scriber s3. (The batch processes of subscribers s2 and s4 have
just been processed.) So the batch scheduler 410 decides to
run the batch process 308B of subscriber s3.

Next at the time point 374, the batch scheduler 410 deter-
mines that there is an overdue batch process in the overdue
queue 402: TB(s1)>NxSUM(DB). The previous batch pro-
cess 301 of subscriber sl is performed in the beginning of the
last cycle as shown in FIG. 3. The time elapsed since last
batch process commencement for subscriber s1 is more than
the total cycle processing time times the factor N. Therefore,
the batch scheduler 410 instructs the batch processor 420 to
perform the batch process 309B of subscriber s1 next.

Then at the time point 375, the batch scheduler 410 deter-
mines that subscriber s2 has again used the system at time
point 326 and the batch process of subscriber s2 is again the
oldest batch process in the recently used queue 403. So the
batch process 310B of subscriber s2 will run next.

At the time point 376, the batch scheduler 410 determines
that the expedite queue 401, the overdue queue 402 and the
recently used queue 403 are empty. The batch scheduler 410
then picks the batch process of subscriber s5 from the low
priority queue 404 and instructs the batch processor 420 to
perform the batch process 311B of subscriber s5.

As shown in FIG. 3, the usage patterns are important for the
batch scheduler 410 to make the scheduling decisions. A
system with a large number of subscribers can collect usage
patterns of the subscribers and identifies the inactive or infre-
quent subscribers based on the metrics of the subscribers. The
inactive or infrequency subscribers are treated with lower
priority like in FIG. 3. However, the inactive or infrequent
subscribers likely will not notice the difference due to their
sparse usage patterns. This enables the system to focus on the
more urgent tasks associated with active or frequent subscrib-
ers.

Note that although the example described above can
involve scheduling batch processes for extract, transform and
load (ETL) tasks, a person having ordinary skill in the art will
readily appreciates that the prioritized scheduling method can
be used to schedule processes or tasks other than ETL tasks in
other embodiments.

The subscribers of the system can affect the scheduling
prioritization decisions by various ways. For example, a sub-
scriber can explicitly request expediting the submitted batch
process through the user interface. The subscriber can use the
system more often by, e.g., interacting with the system
through the user interface, or background usage such as gen-
erating a report in the background or utilizing APIs of the
system. In some embodiments, the subscribers may request to
adjust the N factor as a way to adjust the level of service.

The system measures metrics internally and records, e.g.,
how long it takes for the subscribers to have their batch
processing data come in, the batch process runs, the DB
duration of the last batch process, the time elapse since the last
process started (TB), etc. These metrics are for internal cal-
culations within the system and are not subject to subscribers’
dictation.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

In some alternative embodiments, the N factor can be
dynamically adjusted either by the batch scheduler 410 or a
subscriber. For example, the batch scheduler 410 can dynami-
cally adjust the N factor on the fly based on the load situation.
When the batch scheduler 410 increases the value of the N
factor, the batch scheduler effectively increases the time win-
dow for allowing running the batch processes from the
recently used queue 403 to meet their DT target. On the other
hand, when the batch scheduler 410 decreases the value of'the
N factor, the batch scheduler 410 may focus more on the
overdue queue 402 because the load situation of the system
causes a large number of overdue batch processes.

FIG. 5 is ablock schematic diagram that depicts a machine
in the exemplary form of a computer system 500, within
which a set of instructions for causing the machine to perform
any of the herein disclosed methodologies (e.g., FIGS. 3-4)
may be executed. For example, the computer system 500 can
be, e.g., the task processing system 100 or a server of the task
processing system or the batch scheduler 410 or the batch
processor 420. In some embodiments, the computer system
500 may include a network router, a network switch, a net-
work bridge, personal digital assistant (PDA), a cellular tele-
phone, a Web appliance or any machine capable of executing
or transmitting a sequence of instructions that specitfy actions
to be taken. The computer system 500 is intended to illustrate
a hardware device on which any of the instructions, pro-
cesses, modules and components depicted in the figures
above (and any other processes, techniques, modules and/or
components described in this specification) can be imple-
mented. As shown, the computer system 500 includes a pro-
cessor 502, memory 504, non-volatile memory 506, and a
network interface 508. Various common components (e.g.,
cache memory) are omitted for illustrative simplicity. The
computer system 500 can be of any applicable known or
convenient type, e.g., a personal computer (PC), server-class
computer or mobile device (e.g., smartphone, card reader,
tablet computer, etc.). The components of the computer sys-
tem 500 can be coupled together via a bus and/or through any
other known or convenient form(s) of interconnect(s).

One of ordinary skill in the relevant art will recognize that
the terms “machine-readable (storage) medium” or “com-
puter-readable (storage) medium” include any type of device
that is accessible by the processor 502. The memory 504 is
coupled to the processor 502 by, for example, a bus 510. The
memory 504 can include, by way of example but not limita-
tion, random access memory (RAM), e.g., dynamic RAM
(DRAM) and static RAM (SRAM). The memory 504 can be
local, remote, or distributed.

The bus 510 also couples the processor 502 to the non-
volatile memory 506 and drive unit 512. The non-volatile
memory 506 may be a hard disk, a magnetic-optical disk, an
optical disk, a read-only memory (ROM), e.g., a CD-ROM,
Erasable Programmable Read-Only Memory (EPROM), or
Electrically Erasable Programmable Read-Only Memory
(EEPROM), a magnetic or optical card, or another form of
storage for large amounts of data. The non-volatile memory
506 can be local, remote, or distributed.

The data structures, modules, and instruction steps
described in the figures above may be stored in the non-
volatile memory 506, the drive unit 512, or the memory 504.
The processor 502 may execute one or more of the modules
stored in the memory components.

The bus 510 also couples the processor 502 to the network
interface 508. The network interface 508 can include one or
more of a modem or network interface. A modem or network
interface can be considered to be part of the computer system
500. The network interface 508 can include an Ethernet card,

US 9,311,139 Bl

11

a Bluetooth card, an optical fiber interface, a cable modem, a
token ring interface, or other interfaces for coupling a com-
puter system to other computer systems.

It is to be understood that embodiments may be used as or
to support software programs or software modules executed
upon some form of processing core (e.g., the CPU of a com-
puter) or otherwise implemented or realized upon or within a
machine or computer readable medium. A machine-readable
medium includes any mechanism for storing or transmitting
information in a form readable by a machine, e.g., a computer.
For example, a machine readable medium includes read-only
memory (ROM); random access memory (RAM); magnetic
disk storage media; optical storage media; flash memory
devices; electrical, optical, acoustical or other form of propa-
gated signals, for example, carrier waves, infrared signals,
digital signals, etc.; or any other type of media suitable for
storing or transmitting information.

Some embodiments of the disclosure have other aspects,
elements, features, and steps in addition to or in place of what
is described above. These potential additions and replace-
ments are described throughout the rest of the specification.

What is claimed is:
1. A computer-implemented method of scheduling batch
processing of a batch processing system, comprising:
automatically recording subscriber usage events based on
subscriber usage patterns collected in response to sub-
scriber background usage, wherein said subscriber
usage events are identified from any of subscriber inter-
actions with the batch processing system via a user inter-
face provided by the batch processing system, and when
background usage for the subscriber occurs;
recording a last job commencement event for a subscriber
when the batch processing system starts processing a
batch process for the subscriber;
recording a last usage event for the subscriber when the
subscriber uses the batch processing system;
in an event that a time period elapsed since the last usage
event for the subscriber is less than a time period elapsed
since the last job commencement event for the sub-
scriber, placing a next batch process of the subscriber
into a recently used queue;
identifying the next batch process of the subscriber as the
oldest batch process from the recently used queue; and
starting processing of the identified batch process for the
subscriber.
2. The computer-implemented method of claim 1, further
comprising:
recording the last job commencement of the subscriber
when the batch processing system starts processing the
identified batch process for the subscriber; and
recording a time duration of a last batch process of the
subscriber when the batch processing system finishes
processing the identified batch process for the sub-
scriber.
3. The computer-implemented method of claim 1, further
comprising:
determining that there is no batch process left in the
recently used queue;
identifying the oldest batch process from a low priority
queue, the low priority queue having a lower priority
than the recently used queue; and
start processing the identified oldest batch process from the
low priority queue.
4. The computer-implemented method of claim 1, further
comprising:

10

15

20

25

30

35

40

45

50

55

60

65

12

recording an expedite request event for the subscriber
when the subscriber requests the batch processing sys-
tem to expedite the next batch process of the subscriber;

inresponse to the expedite request event for the subscriber,
placing the next batch process of the subscriber into an
expedite queue, the expedite queue having a higher pri-
ority than the recently used queue;

identifying the next batch process of the subscriber as the

oldest batch process from the expedite queue; and

start processing the identified batch process for the sub-

scriber.

5. The computer-implemented method of claim 4, wherein
the subscriber requests the batch processing system to expe-
dite the next batch process of the subscriber through a web
browser user interface provided by the batch processing sys-
tem.

6. The computer-implemented method of claim 1, further
comprising:

in an event that the time period elapsed since the last job

commencement event for the subscriber is more than an
adjusted overdue threshold, placing the next batch pro-
cess of the subscriber into an overdue queue, the overdue
queue having a higher priority than the recently used
queue;

identifying the next batch process of the subscriber as the

oldest batch process from the overdue queue; and

start processing the identified batch process for the sub-

scriber.

7. The computer-implemented method of claim 6, wherein
the adjusted overdue threshold equals a total cycle processing
time times a limit factor, the total cycle processing time is the
total time taken by the batch processing system to complete
all batch processes of a last cycle, and the limit factor deter-
mines how far batch processes in the overdue queue are
allowed to lapse before being processed.

8. The computer-implemented method of claim 7, further
comprising:

dynamically adjusting the limit factor based on the load

situation of the batch processing system to change a time
window for allowing running batch processes from the
recently used queue.

9. The computer-implemented method of claim 7, further
comprising:

receiving a request from the subscriber for adjusting a level

of service for the subscriber; and

adjusting the limit factor specifically for one or more batch

processes of the subscriber in response to the request for
adjusting the level of service for the subscriber.

10. The computer-implemented method of claim 1,
wherein the subscriber uses the batch processing system by
interacting with the batch processing system through a user
interface provided by the batch processing system, or by
executing a background usage task, or by interacting with the
batch processing system through an application program-
ming interface (API) provided by the batch processing sys-
tem.

11. The computer-implemented method of claim 1,
wherein the identified batch process for the subscriber is an
extract, transform and load (ETL) process for data movement
and transformation.

12. The computer-implemented method of claim 1,
wherein the oldest batch process from the recently used queue
is a batch process that has an earliest submission time among
batch processes in the recently used queue.

13. A computer-implemented method of prioritizing batch
processing based on user usage patterns, comprising:

US 9,311,139 Bl

13

automatically recording user usage events based on user
usage patterns collected in response to user background
usage, wherein said user usage events are identified from
any of user interactions with the batch processing sys-
tem via a user interface provided by the batch processing
system, and when background usage for the user occurs;

determining, by a batch scheduler of a batch processing
system, whether there are any overdue batch processes
left in an overdue queue;

in response to the determination that there are overdue

batch processes left in the overdue queue, instructing a
batch processor of the batch processing system to start
processing the oldest overdue batch process from the
overdue queue;

determining, by the batch scheduler, whether there are any

batch processes of users who recently used the batch
processing system left in a recently used queue, the
recently used queue having a lower priority than the
overdue queue; and

in response to the determination that that there are batch

processes left in the recently used queue, instructing the
batch processor to start processing the oldest batch pro-
cess from the recently used queue.
14. The computer-implemented method of claim 13, fur-
ther comprising:
identifying a batch process for a user wherein a time period
elapsed since the user’s last usage of the batch process-
ing system is less than a time period elapsed since a last
batch process commencement event for the user; and

moving the identified batch process into the recently used
queue by the batch scheduler.

15. The computer-implemented method of claim 13, fur-
ther comprising:

identifying an overdue batch process for a user wherein a

time period elapsed since a last batch process com-
mencement event for the user is more than an overdue
threshold.
16. The computer-implemented method of claim 15,
wherein the overdue threshold depends on a total time taken
by the batch processing system to complete all batch pro-
cesses of a last cycle, and a limit factor determining how far
batch processes in the overdue queue are allowed to lapse
before being processed.
17. The computer-implemented method of claim 13, fur-
ther comprising:
moving a batch process for a user into an expedite queue in
response to a user request to expedite, the expedite
queue having a higher priority than the overdue queue;

determining, by the batch scheduler, whether there are any
expedite batch processes left in the expedite queue; and

in response to the determination that there are expedite
batch processes left in the expedite queue, instructing a
batch processor to start processing the oldest expedite
batch process from the expedite queue.

18. The computer-implemented method of claim 13, fur-
ther comprising:

determining, by the batch scheduler, that there are no batch

process left in the overdue queue and the recently used
queue; and

10

15

20

25

30

35

40

45

50

55

14

instructing the batch processor to start processing the old-
est batch process from a low priority queue, the low
priority queue having a lower priority than the overdue
queue and the recently used queue.
19. A computing device, comprising:
a processor;
a user interface configured to interact with users of the
computing device;
a batch scheduler module;
a memory storing executable instructions implementing
the batch scheduler module which, when executed by
the processor, is configured to perform the process of:
automatically recording user usage events based on user
usage patterns collected in response to user back-
ground usage, wherein said user usage events are
identified from any of user interactions with the batch
processing system via a user interface provided by the
batch processing system, and when background usage
for the user occurs;

monitoring user usage events for the users of the com-
puting device,

recording batch process commencement events for the
users and time durations of last batch processes for the
users,

determining that a time period elapsed since the last
batch process commencement event for a first user is
more than an adjusted overdue threshold, and moving
a first batch process of the first user into an overdue
queue,

determining that a time period elapsed since the last
usage event for a second user is less than a time period
elapsed since the last batch process commencement
event for the second user, and moving a second batch
process of the second user into a recently used queue,
and

starting executing batch processes in the recently used
queue when the overdue queue is empty.

20. The computing device of claim 17, wherein the process
further includes steps of:

moving a third batch process of a third user into an expedite
queue, in response to a request from the third user to
expedite the third batch process; and

start processing batch processes in the expedite queue
before handling batch processes from the overdue queue
and the recently used queue.

21. The computing device of claim 20, wherein the process

further includes steps of:

moving batch processes that do not belong to the expedite
queue, the overdue queue and the recently used queue
into a low priority queue; and

start processing batch processes from the low priority
queue when the expedite queue, the overdue queue and
the recently used queue are empty.

22. The computing device of claim 17, wherein the
adjusted overdue threshold depends on a total time taken by
the computing device to complete all batch processes of a last
cycle, and a limit factor determining how far batch processes
in the overdue queue are allowed to lapse before being pro-
cessed.

